
SGV: Spatial Graph Visualization∗

Tarlan Bahadori
tbaha001@ucr.edu

UC Riverside
California, USA

Alvin Chiu
chiua13@uci.edu

UC Irvine
California, USA

Ahmed Eldawy
eldawy@ucr.edu
UC Riverside

California, USA

Michael T. Goodrich
goodrich@uci.edu

UC Irvine
California, USA

Abstract
Spatial graphs, where nodes carry geographic location information,
are vital for modeling complex relationships in domains such as
location-based social networks, transportation systems, and knowl-
edge graphs. However, it is challenging to visualize large spatial
graphs while simultaneously showing edge connections and vertex
spatial fidelity, especially when the location of each vertex is impre-
cise. We present a distributed geospatial force-directed framework
that visualizes spatial graphs where location can be represented as
a point, multi-point, linestring, or polygon. It integrates three mod-
els for anchoring forces: centroidal, inside-out, and closest-point.
The algorithm is formulated as relational operations and runs end-
to-end on Apache Spark/SparkSQL, achieving near-linear scaling.
Experiments on train networks, author–publication graphs, and
location-based social networks show clearer layouts that balance
edge lengths and spatial fidelity while reducing crossings.

CCS Concepts
• Information systems→ Geographic information systems; •
Human-centered computing→ Information visualization.

Keywords
Geospatial Anchoring, Force-Directed Graph Layout, Spatial Graph

ACM Reference Format:
Tarlan Bahadori, Alvin Chiu, Ahmed Eldawy, and Michael T. Goodrich.
2025. SGV: Spatial Graph Visualization. In The 33rd ACM International
Conference on Advances in Geographic Information Systems (SIGSPATIAL
’25), November 3–6, 2025, Minneapolis, MN, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3748636.3762772

1 Introduction
Graphs are a flexible model for complex relationships in location-
based social networks [4, 19], transportation systems, academic
collaboration [27], and knowledge graphs [25]. In many of these
settings, nodes carry spatial context that is uncertain or multi-
valued, making it challenging to present a layout that respects
geography while revealing graph structure [23]. Purely topological
drawings can distort the map, whereas purely spatial placements
often tangle edges and obscure patterns.

∗This work is supported in-part by the National Science Foundation under grants
2046236, 2212129, and 2520163

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGSPATIAL ’25, Minneapolis, MN, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2086-4/2025/11
https://doi.org/10.1145/3748636.3762772

Force-directed layouts model vertices as mutually repelling par-
ticles and edges as springs, yielding clear, interpretable drawings[6,
8, 11, 12, 16, 24]. As noted by prior work [7, 13], naïve all-pairs re-
pulsion is𝑂 (𝑛2) and the repulsion energy is non-convex, so layouts
can stall in cluttered local minima. Distributed variants partition
computation or use big-data engines, but had high network over-
heads [14, 21]. In parallel, geospatial/anchored layouts balance map
faithfulness and readability by fixing or softly constraining node
positions [20]. Visual clutter can be reduced with edge bundling
and geometry-based clustering [5, 15], though these do not them-
selves enforce geographic constraints. Region-based anchoring via
centroid or boundary forces has been explored, typically for single-
region constraints or polygon anchors at moderate scale [3, 26].

This paper presents a distributed spatial graph layout that fuses
uncertain geography with force-directed structure at scale. We ex-
tend anchoring beyond polygons to multi-point sets and linestrings,
pulling vertices toward multiple candidate locations without hard
pinning. Each iteration is expressed in SparkSQL: an equi-join
over edges for attraction, spatial joins with anchor geometries,
and a spatial self-join for near-neighbor repulsion, followed by
partition-local accumulation with periodic summary rebroadcast.
This communication-aware design avoids all-pairs interactions, re-
duces shuffles, and achieves near-linear scaling while preserving
geographic fidelity.

We evaluate on three geospatial graph case studies: transporta-
tion networks, author–publication graphs, and location-based so-
cial networks, showing cleaner pattern revelation than non-spatial
layouts and up to 20× speed-ups on very large inputs. To our knowl-
edge, no prior system simultaneously supports multi-anchor con-
straints (multi-point, linestring, polygon) and big-data scalability
within a single force-directed framework.

2 Problem Definition
Rendering large spatial graphs at scale presents two competing chal-
lenges: 1) Preserve visual readability by minimizing edge crossings
and vertex overlaps, making edge lengths similar, and minimizing
the overall used drawing area [13]. 2) Maintain spatial fidelity by
anchoring vertices to geographic regions. To address this, we model
each dataset as a geospatial undirected graph, 𝐺 = (𝑉 , 𝐸), where
each vertex 𝑢 ∈ 𝑉 has a location ℓ𝑢 ∈ R2 and an anchor region
𝐴𝑢 ⊆ R2 (point, multi-point set, polygon, or linestring). Our goal is
to compute a graph layout that assigns a location r𝑢 ∈ R2 for each
vertex 𝑢 and maps edges to line segments joining their endpoints
while satisfying: 1) connectivity: connected vertices are reason-
ably close to each other, 2) edge homogeneity: edge lengths are
roughly of the same size, 3) spatial fidelity: vertices are close to
their anchor location, and 4) scalability: the solution should scale
to large graphs.

https://doi.org/10.1145/3748636.3762772
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748636.3762772

SIGSPATIAL ’25, November 3–6, 2025, Minneapolis, MN, USA Bahadori et al.

(a) Closest-Point - Polygon (b) Closest-Point - Linestring (c) Centroidal - Multi-point (d) Closest-Point - Multi-point

Figure 1: Visualization of anchor force fields in different cases. Color indicates magnitude and vectors indicate direction.

Traditional force-directed graph visualization algorithms focus
on the first two goals by modeling nodes as charged particles and
edges as loaded springs. This keeps connected vertices close to
each other while decluttering the layout. This paper enriches tra-
ditional algorithms by integrating anchoring forces that satisfy
spatial fidelity. In addition, our algorithm is designed to work on
the distributed Spark framework that satisfies the scalability goal.

Extended Anchoring Metrics. Let each vertex 𝑢 have position r𝑢
and anchor region 𝐴𝑢 , with center of mass 𝑐𝑢 and the closest point
on anchor region to r𝑢 is denoted by 𝑝𝑢 . We define the size of𝐴𝑢 as

𝜇 (𝐴𝑢) =


1, 𝐴𝑢 is a point,
|𝐴𝑢 |, 𝐴𝑢 is a finite set of points,
Length(𝐴𝑢), 𝐴𝑢 is a linestring,
Area(𝐴𝑢), 𝐴𝑢 is a polygon,

and let

c𝑢 =
1

𝜇 (𝐴𝑢)

∫
𝐴𝑢

x d𝜇 (x), p𝑢 = arg min
y∈𝐴𝑢

∥r𝑢 − y∥.

In practice:
• Point anchors: c𝑢 = p𝑢 = 𝐴𝑢 .
• Multi-point anchors: c𝑢 is the arithmetic weighted mean of
the points; p𝑢 is the nearest point in the set to 𝑟𝑢 .
• Linestring anchors: c𝑢 is the midpoint on the linestring; p𝑢
is the projection of 𝑟𝑢 on the linestring.
• Polygon anchors: c𝑢 is the area centroid; p𝑢 is the closest
boundary point of the polygon to 𝑟𝑢 .

Using an anchoring force coefficient 𝛼 , we define three force
variants that are based on Hooke’s Law for spring force:

Centroidal Anchor Force.

Fanchor
𝑢 = 𝛼

(
c𝑢 − r𝑢

)
.

Inside–Out Anchor Force.

Fanchor
𝑢 =

{
𝛼 (c𝑢 − r𝑢), r𝑢 ∉ 𝐴𝑢 ,

0, r𝑢 ∈ 𝐴𝑢 .

Closest–Point Anchor Force.

Fanchor
𝑢 =

{
𝛼 (p𝑢 − r𝑢), r𝑢 ∉ 𝐴𝑢 ,

0, r𝑢 ∈ 𝐴𝑢 .

Anchoring forces are vectors: they have magnitude and a direction
from the vertex position to the target (centroid or closest point).

Figure 1(a–d) shows the force fields for four cases; darker color
means larger magnitude and arrows indicate direction. (a) Poly-
gon anchor + closest point model: smooth field toward the near-
est boundary. (b) Linestring anchor + closest point model: simi-
larly smooth toward the curve. (c) Multi-point anchor + centroidal:
smooth pull toward the centroid. (d) Multi-point anchor + closest
point model: Voronoi-like regions with discontinuities.

3 Relational Query Modeling with SparkSQL
We express each force component as a relational query over the
base relations Vertices(vid, currx, curry, anchor) and
Edges(srcid, dstid). The primary key of Vertices is vid;
Edges has composite key (srcid,dstid). The anchor column in
Vertices holds the anchoring geometry (point, multipoint, linestring,
or polygon). If the anchor spans the whole plane, the vertex is effec-
tively free. Attractive forces are computed via equi-joins between
Edges and Vertices; pairwise repulsion is, in principle, a Carte-
sian product over Vertices but we approximate it via a distance-
limited spatial self-join for scalability.

Each iteration sums attractive, repulsive, and anchoring contri-
butions to obtain (𝐹𝑥 , 𝐹𝑦) per vertex, then advances positions.

Attractive Forces (Edges ⊲⊳ Vertices).

Attractive (spring) forces. Following the spring–embedder model
(not strictly physical [13]), each edge pulls its endpoints toward an
ideal length 𝐿 (spring rest length). For edge (𝑢, 𝑣) with positions
p𝑢 , p𝑣 , let Δr𝑢𝑣 = p𝑢 − p𝑣 and clamp small separations by 𝑑 =

max(∥Δr𝑢𝑣 ∥, 𝜀). The attractive force on 𝑢 due to 𝑣 is

Fatt𝑢←𝑣 = − 𝑑

𝐿
Δr𝑢𝑣,

with Fatt𝑣←𝑢 = −Fatt𝑢←𝑣 by symmetry; the net attractive force on
vertex 𝑖 sums contributions over its incident edges.
WITH Endpts AS (
SELECT e.srcid AS u, e.dstid AS v,

us.currx AS ux, us.curry AS uy, vs.currx AS vx, vs.curry AS vy,
(vs.currx - us.currx) AS dx, (vs.curry - us.curry) AS dy,
(GREATEST(SQRT(POW(vs.currx-us.currx,2) +

POW(vs.curry-us.curry,2)), :eps) / :L) AS coef
FROM Edges e
JOIN Vertices us ON e.srcid = us.vid
JOIN Vertices vs ON e.dstid = vs.vid

),

SGV: Spatial Graph Visualization SIGSPATIAL ’25, November 3–6, 2025, Minneapolis, MN, USA

PairForces AS (
SELECT u AS vid, coef * dx AS fx, coef * dy AS fy FROM Endpts
UNION ALL
SELECT v AS vid, -coef * dx AS fx, -coef * dy AS fy FROM Endpts

)
SELECT vid, SUM(fx) AS fax, SUM(fy) AS fay
FROM PairForces
GROUP BY vid;

Repulsive Forces (Spatial Self-Join). For distinct vertices 𝑢 ≠ 𝑣 , let
r𝑢𝑣 = p𝑢 − p𝑣 . The repulsive force Frep is defined as

𝑑2 = max
(
∥r𝑢𝑣 ∥2, 𝜀2), Frep𝑢←𝑣 = 𝑐rep

r𝑢𝑣
𝑑2 .

where 𝑐rep is a constant. Exact evaluation is𝑂 (|𝑉 |2), so we approx-
imate by a spatial self-join that keeps only neighbors within cutoff
radius 𝑟 . The net repulsion on vertex 𝑖 is:

Frep
𝑖

=
∑︁

𝑗 ∈ N𝑟 (𝑖)
𝑐rep

p𝑖 − p𝑗
max(∥p𝑖 − p𝑗 ∥2, 𝜀2)

.

WITH Pairs AS (
SELECT a.vid AS u, b.vid AS v,

(a.currx - b.currx) AS dx, (a.curry - b.curry) AS dy,
POW(a.currx - b.currx, 2) + POW(a.curry - b.curry, 2) AS d2

FROM Vertices a JOIN Vertices b ON a.vid <> b.vid
WHERE POW(a.currx - b.currx, 2) + POW(a.curry - b.curry, 2) < :r2

),
Rep AS (
SELECT

u AS vid,
:crep * dx / GREATEST(d2, :eps2) AS frx, -- :eps2 = 𝜀^2
:crep * dy / GREATEST(d2, :eps2) AS fry

FROM Pairs
)
SELECT vid, SUM(frx) AS frx, SUM(fry) AS fry
FROM Rep
GROUP BY vid;

Anchoring forces. Each vertex 𝑣 stores an anchor geometry 𝐴(𝑣)
(WKT in Vertices.anchor) and a chosen rule where 𝑚 is one
of centroidal, closest, or inside–out. Let p𝑣 = (𝑥𝑣, 𝑦𝑣). We pull 𝑣
toward a rule-specific target 𝝉𝑚 (𝑣): centroidal uses centroid(𝐴(𝑣));
closest uses the closest point on 𝐴(𝑣) when p𝑣 ∉ 𝐴(𝑣) (no pull if
inside); inside–out uses the closest point on 𝜕𝐴(𝑣) when p𝑣 ∈ 𝐴(𝑣)
(no pull if outside). The force is

Fanc (𝑣) = 𝑘𝑛
(
𝝉𝑚 (𝑣) − p𝑣

)
.

Implementation. In SparkSQL we compute 𝝉𝑚 (𝑣) using Sedona/JTS
UDFs (e.g., ST_Contains, ST_Centroid, ST_ClosestPoint) and
emit per-vertex force components Anc(vid, fnx, fny).

-- Minimal pattern: delegate geometry details to UDFs
-- :method one of {'centroidal','closest','insideout'}
WITH Anc AS (
SELECT v.vid,

:kn * (ANCHOR_TX(v.anchor, v.currx, v.curry, :method) - v.currx)
AS fnx,

:kn * (ANCHOR_TY(v.anchor, v.currx, v.curry, :method) - v.curry)
AS fny

FROM Vertices v
)
SELECT * FROM Anc;

Notes. The UDFs encapsulate the simple predicates (e.g., “if outside,
pull to closest point; if inside and inside-out, pull to boundary; if
centroidal, pull to centroid).

2×10−4 2×10−3 2×10−2 2×10−1
0.75

0.8

0.85

0.9

0.95

𝐿

H
EL

af
te
r

2×10−4 2×10−3 2×10−2 2×10−1
0

0.5

1

1.5

2 ·10−2

𝐿

N
A
D

OGDF SGV HEL𝑏𝑒 𝑓 𝑜𝑟𝑒

Figure 2: Author–publication network: HEL (left) and NAD
(right) vs. 𝐿 (ideal edge length).

Position Update and Iteration. Let the net force on vertex 𝑖 be F𝑖 =
Fatt
𝑖
+Frep

𝑖
+Fanc

𝑖
. A per-iteration temperature 𝜏𝑡 caps the maximum

movement. The raw displacement equals the net force and is clipped
to length 𝜏𝑡 before applying. Relationally, we materialize three per-
vertex force tables—Attr, Rep, and Anc—take a single bag union
(UNION ALL), and aggregate by vid to obtain Total with fields
(vid, 𝐹𝑥 , 𝐹𝑦). We left-join Total onto Vertices and update with
a temperature cap: Δ𝑥 = clip(𝐹𝑥 , 𝜏𝑡), Δ𝑦 = clip(𝐹𝑦, 𝜏𝑡), newx =

currx + Δ𝑥, newy = curry + Δ𝑦.

300 2 50
0

22 8
00
47 4

00
107

000
214

000
535

000

1 07
1 00

0
0

50

100

150

Number of vertices (log scale)

Av
g.
se
co
nd

sp
er

ite
ra
tio

n

SGV
Baseline

Figure 3: Per-iteration runtime on Gowalla graphs: SGV vs.
OGDF across increasing vertex counts (log-scaled x-axis).

4 Experimental Evaluation
Setup. We ran experiments on a 12-node Spark cluster. The mas-

ter has 2×8-core Intel Xeon E5-2609 v4 (1.70 GHz) and 128 GB RAM;
each worker has 2×6-core E5-2603 v4 (1.70 GHz) and 64 GB RAM.
All nodes run CentOS 7.5; SGV code is available on GitHub [1].

Datasets and scalability protocol. We use three graph families: rail
networks, author–publication, and location-based social networks
(LBSN), to illustrate layout quality and scalability. All scalability
experiments use a Gowalla-derived dataset [17] constructed at mul-
tiple sizes via: (i) BFS subsets: starting from random seeds, we
extract 2–3-hop neighborhoods to obtain smaller graphs while pre-
serving local structure; and (ii) 𝑘× augmentations: we fit a 2D
density to the original vertex locations and a degree histogram, then
sample 𝑘 |𝑉 | new coordinates and desired degrees; edges are formed
by distance-biased stub matching, preserving spatial clustering and
degree distribution at larger scales.

SIGSPATIAL ’25, November 3–6, 2025, Minneapolis, MN, USA Bahadori et al.

Evaluation Metrics.

Homogeneous Edge Length (HEL). HEL [18] measures edge-
length uniformity. Let 𝐸 be the edge set, 𝑚 = |𝐸 |, ℓ𝑗 = ∥𝑒 𝑗 ∥, ℓ̄
the mean edge length, and ℓmax the maximum. Define

HEL = 1 − 1
𝑚

𝑚∑︁
𝑗=1

���� ℓ𝑗 − ℓ̄
max(ℓ̄, ℓmax − ℓ̄)

���� .
HEL lies in [0, 1] (1 = perfectly equal lengths; higher is better). We
compute ℓ𝑗 as geodesic (haversine) distances from vertex lat/lon
and report HEL before/after SGV to quantify layout regularity.

Normalized Anchor Distance (NAD). For vertex 𝑢 at position r𝑢
and anchor geometry 𝐴(𝑢) ⊂ R2, define

𝑑𝐴 (𝑢) = min
𝑝∈𝐴(𝑢)

∥r𝑢 − 𝑝 ∥, 𝑑𝐴 =
1

|𝑉 |𝐷MBR

∑︁
𝑢∈𝑉

𝑑𝐴 (𝑢),

where𝐷MBR is the diagonal length of the dataset’s minimum bound-
ing rectangle. Variants: for centroidal anchoring, use 𝑑𝐴 (𝑢) =

∥r𝑢 − centroid(𝐴(𝑢))∥; for inside–out, set 𝑑𝐴 (𝑢) = 0 if r𝑢 ∈ 𝐴(𝑢)
and otherwise use the centroid distance.

(a) Initial layout (b) Final w/ anchors (c) Final w/o anchors

Figure 4: Railroad network in Paris: (a) before and (b) after
applying SGV; (c) result with no geospatial anchoring forces.

(a) Initial Layout (b) After SGV Convergence

Figure 5: Railroad network in Paris (zoomed): (a) Initial; (b)
After SGV. The blue station anchor pulls its branch into the
main network, yielding more uniform edge lengths and spac-
ing; the black circle shows reduced clutter and clearer routes.

Results & Analysis. Figure 3 shows the effect of increasing num-
ber of vertices (and edges) in the dataset on the runtime when using
SGV compared to the baseline based on Fruchterman-Reingold im-
plementation from the Open Graph Drawing Framework [2]. The
baseline could not handle the two last augmented datasets.

Author–publication graphs are bipartite, with disjoint author
and paper vertex sets and edges for authorship. Using OpenAlex

[22], we collected ego networks (an author and their 𝑘-hop co-
authors and papers). As shown in Fig. 2, anchoring (SGV) versus
non-anchored Fruchterman–Reingold yields a clear trade-off: SGV
lowers NAD (higher spatial fidelity) while keeping HEL broadly
comparable (occasionally a bit lower or higher, depending on L).

Spatial rail/metro maps are a compelling use case for SGV. Using
the Europe railroad lines [9] and stations [10], we simplify tracks,
drop degree-2 junctions that are not stations, and retain junctions
of degree ≥ 3 to preserve topology. Each station is a vertex anchored
to a 0.002◦×0.002◦ square around its geocoordinate; major junction
stations receive stronger anchoring, while topology-only junction
points remain unanchored. Figure 4 shows the resulting layout:
without anchoring the geographic outline is lost and the topology
tangles (Fig. 4c); with appropriate anchoring (Fig. 4b) the conti-
nental shape and readability improve, and a zoomed comparison
further highlights decluttering and clearer routes (Fig. 5).

References
[1] Tarlan Bahadori. 2025. SGV Source Code. https://github.com/tarlaun/fdgv.
[2] Markus Chimani et al. 2014. The Open Graph Drawing Framework (OGDF). In

Handbook of Graph Drawing and Visualization. CRC Press, Chapter 17.
[3] Alvin Chiu et al. 2024. Polygonally Anchored GraphDrawing (Extended Abstract).

In 32nd International Symposium on Graph Drawing and Network Visualization.
[4] Eunjoon Cho et al. 2011. Friendship and mobility: user movement in location-

based social networks. In Proceedings of the 17th ACM SIGKDD.
[5] Weiwei Cui et al. 2008. Geometry-Based Edge Clustering for Graph Visualization.

IEEE Transactions on Visualization and Computer Graphics (2008).
[6] Giuseppe Di Battista et al. 1999. Graph Drawing.
[7] Tim Dwyer, Ken Marriott, and Michael Wybrow. 2006. Integrating Edge Routing

into Force-Directed Layout. In Graph Drawing.
[8] Peter Eades. 1984. A Heuristic for Graph Drawing. Congressus Numerantium 42.
[9] EuroGeographics. 2016. Europe – Rail Road. https://public.opendatasoft.com/

explore/dataset/europe-rail-road/information/ Accessed: 2025-05-05.
[10] EuroGeographics. 2016. Europe – Railway Station. https://public.opendatasoft.

com/explore/dataset/europe-railway-station/export/ Accessed: 2025-05-05.
[11] Thomas M. J. Fruchterman and Edward M. Reingold. 1991. Graph Drawing by

Force-Directed Placement. Software: Practice and Experience 21, 11 (1991).
[12] Pawel Gajer et al. 2004. A multi-dimensional approach to force-directed layouts

of large graphs. Computational Geometry (2004).
[13] Stefan Hachul. 2005. A Potential-Field-Based Multilevel Algorithm for Drawing

Large Graphs. Ph. D. Dissertation. Universität zu Köln.
[14] Antoine Hinge et al. 2015. Distributed Graph Layout with Spark. In Proceedings

of the 2015 19th International Conference on Information Visualisation (IV ’15).
[15] Danny Holten and Jarke J. van Wijk. 2009. Force-Directed Edge Bundling for

Graph Visualization. Computer Graphics Forum 28, 3 (2009), 983–990.
[16] Tomihisa Kamada and Satoru Kawai. 1989. An Algorithm for Drawing General

Undirected Graphs. Inform. Process. Lett. 31 (1989).
[17] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.
[18] Giordano Da Lozzo et al. 2015. Drawing georeferenced graphs-combining graph

drawing and geographic data. In IVAPP.
[19] Wei Luo et al. 2011. Spatial-social network visualization for exploratory data

analysis. In Proc. 3rd ACM SIGSPATIAL LBSN.
[20] Kelly A. Lyons, Henk Meijer, and David Rappaport. 1998. Algorithms for Cluster

Busting in Anchored Graph Drawing. J. Graph Algorithms Appl. (1998).
[21] Christopher Mueller et al. 2006. Distributed Force-Directed Graph Layout and

Visualization.. In EGPGV@ EuroVis/EGVE.
[22] Jason Priem, Heather Piwowar, and Richard Orr. 2022. OpenAlex: A fully-open

index of scholarly works, authors, venues, institutions, and concepts.
[23] Sarah Schöttler et al. 2021. Visualizing and Interacting with Geospatial Networks:

A Survey and Design Space. Comput. Graph. Forum 40, 6 (2021).
[24] Roberto Tamassia. 2013. Handbook of Graph Drawing and Visualization.
[25] Sizhe Wang et al. 2023. GeoGraphViz: Geographically constrained 3D force-

directed graph for knowledge graph visualization. Transactions in GIS (2023).
[26] Hsiang-Yun Wu et al. 2022. Multi-level Area Balancing of Clustered Graphs. IEEE

Trans. Visualization and Computer Graphics 28, 7 (2022), 2682–2696.
[27] Ye Yu et al. 2022. NcoVis: A Visual Analysis Framework for Exploring Academic

Collaboration Networks under NewCollaborative Relationships. In IEEE CSCWD.

https://github.com/tarlaun/fdgv
https://public.opendatasoft.com/explore/dataset/europe-rail-road/information/
https://public.opendatasoft.com/explore/dataset/europe-rail-road/information/
https://public.opendatasoft.com/explore/dataset/europe-railway-station/export/
https://public.opendatasoft.com/explore/dataset/europe-railway-station/export/
http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Problem Definition
	3 Relational Query Modeling with SparkSQL
	4 Experimental Evaluation
	References

